Decoding the Polyphenol Impact on the Cardiovascular System: A Journey from the French Paradox to Restenosis

Ioana Craciun1, * and Gheorghe Florinel Brudașcă1,

1, * Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur nr. 3-5, 400372 Cluj-Napoca, Romania.
*ioana.craciun@usamvcluj.ro, florinbrudasca@yahoo.com

Abstract: Resveratrol and quercetin, two natural polyphenolic compounds, exhibit potential in veterinary and human medicine for cardiovascular benefits, particularly for the prevention and management of restenosis, a complex process involving blood vessel re-narrowing. This review investigates the impact of these compounds on restenosis in animal models, explaining their modes of action, which include antioxidant, anti-inflammatory, and anti-proliferative capabilities. Additional insights are provided by the intriguing "French Paradox," in which the Southern French population's low heart disease incidence is associated with red wine and polyphenol-rich diet consumption. Through animal models, we gain essential knowledge about the therapeutic potential, safety, and dosing of resveratrol and quercetin in both veterinary and human clinical settings. Understanding their precise molecular pathways is essential in enhancing their effectiveness in reducing restenosis. The "French Paradox" draws attention to the potential cardiovascular benefits of polyphenols in restenosis. Novel approaches to minimize restenosis in veterinary and human medicine may result from bridging the gap between animal models and human trials.

Keywords: quercetin; resveratrol, restenosis.

1. Introduction

Restenosis, the re-narrowing of blood vessels following medical intervention, remains a significant challenge in both veterinary [1] and human medicine [2, 3]. Despite advancements in treatment modalities, the high prevalence of restenosis necessitates further research to develop effective therapeutic strategies. In veterinary medicine, restenosis can occur in various conditions, including coronary artery stenting in companion animals [4, 5] and vascular interventions in porcine models [6, 7]. Like human medicine, restenosis frequently complicates procedures like percutaneous coronary interventions in the veterinary practice field [8]. Restenosis in veterinary patients involves intricate pathophysiological mechanisms, similar to those seen in humans [9]. The initial response to vascular injury involves inflammation and the formation of a neointima, composed primarily of smooth muscle cells and an extracellular matrix [10-12]. Over time, this neointima undergoes remodelling, leading to the re-narrowing of the vessel lumen and potentially compromising blood flow [13]. Addressing restenosis in veterinary patients requires a comprehensive understanding of the contributing factors and potential therapeutic agents that could effectively modulate the restenosis process. Resveratrol and quercetin, two natural polyphenolic compounds, have recently garnered substantial scientific interest due to their promising cardiovascular benefits [14-16]. These polyphenols have demonstrated antioxidant, anti-inflammatory, and anti-proliferative properties, which may have implications in mitigating restenosis in an animal model [17-20]. The cardiovascular effects of resveratrol and quercetin in veterinary medicine are of particular interest in the context of restenosis [21, 22] [20]. Studies in animal models have shown that supplementation with these polyphenols can attenuate oxidative stress and inflammation, leading to reduced smooth muscle cell proliferation and neointimal hyperplasia [23-25]. These findings suggest a potential therapeutic role for resveratrol and quercetin in managing restenosis in veterinary patients.
Therefore, this review aims to explore the interplay between restenosis, the therapeutic potential of resveratrol and quercetin, and the intriguing insights from the "French Paradox" [26-28]. By bridging the translational gap between animal models and human trials, novel and effective therapeutic strategies can be developed to manage restenosis in a comprehensive and targeted manner. Exploring the mechanistic pathways through which resveratrol and quercetin operate in the context of restenosis, encompassing both animal models and human medicine, holds significant promise in uncovering novel treatment modalities that could lead to improved outcomes for both veterinary and human patients.

2. Mechanisms of Restenosis in Human and Veterinary Medicine

Restenosis, the re-narrowing of blood vessels after vascular interventions, poses a significant challenge in both human and veterinary medicine. Despite advancements in treatment approaches, restenosis remains a common complication, warranting a deeper understanding of its underlying mechanisms. In both human and veterinary medicine, restenosis primarily occurs as a response to vascular injury resulting from procedures like percutaneous coronary interventions in humans [29], intrastent percutaneous revascularization of peripheral artery disease [30-32] and coronary artery stenting in companion animals [4, 5, 33, 34]. The initial phase of restenosis involves inflammation and the formation of a neointima, characterized by the proliferation of smooth muscle cells and deposition of the extracellular matrix (Figure 1) [35]. This neointima eventually undergoes remodelling, leading to the re-narrowing of the vessel lumen and potential compromise of blood flow [13]. The mechanisms driving restenosis are complex and multifactorial. Inflammation plays a pivotal role in the initiation and progression of restenosis [13]. Following vascular injury, endothelial cells are disrupted, and platelets are activated, releasing growth factors and cytokines that trigger smooth muscle cell migration and proliferation [36]. The recruitment of inflammatory cells, such as macrophages and T lymphocytes, further contributes to the formation of the neointima [36]. In response to multiple growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-), excessive smooth muscle cell proliferation is recognised as neointimal hyperplasia, a hallmark of restenosis [37]. Additionally, the proliferation and migration of smooth muscle cells are promoted by oxidative stress and reactive oxygen species (ROS) generated immediately following vascular damage [38]. Restenosis is remarkably comparable to its human analogous in veterinary medicine. Studies in animal models have demonstrated comparable mechanisms involving inflammation, smooth muscle cell proliferation, and extracellular matrix deposition [4]. For instance, coronary artery stenting in dogs can lead to restenosis, with neointimal hyperplasia being a predominant factor [33, 37]. Understanding the intricate mechanisms of restenosis in both human and veterinary patients is crucial for the development of targeted therapeutic strategies. By elucidating the key pathways involved in restenosis, researchers can explore novel approaches to mitigate neointimal hyperplasia and promote long-term vessel patency after vascular interventions.
Figure 1. Core Pathological Mechanisms of In-Stent Restenosis. Balloon expansion and stent placement cause mechanical stress, leading to vascular injury, endothelial loss, and inflammation. This prompts inflammatory cells and platelets to release pro-inflammatory factors, initiating a series of events culminating in restenosis. The absence of endothelial protection exposes dormant smooth muscle cells, prompting them to over-proliferate and migrate, contributing to neointima formation. In-stent restenosis occurs when neointimal growth leads to significant lumen narrowing [61].

While the fundamental process of restenosis involves similar cellular and molecular events, there are several factors that can influence the occurrence and progression of restenosis, and these factors can vary between species. Some of the differences include:

a. Vascular Anatomy and Physiology: The structure and physiology of blood vessels can vary between species. Differences in vessel size, wall thickness, and composition can impact the response to injury and the formation of neointima.

b. Cellular Response: The response of smooth muscle cells, endothelial cells, and inflammatory cells to vascular injury can differ between humans and animals. These differences can affect the rate and extent of neointimal growth.

c. Metabolism and Healing: Metabolic rates and healing processes can vary among species. The rate of cell proliferation and migration, as well as the regulation of inflammation and tissue repair, can influence the development of restenosis.

d. Drug Responses: Interventions to prevent restenosis, such as drug-eluting stents, can have varying effects in different species due to differences in drug metabolism, drug delivery, and tissue reactions.

e. Genetic Variation: Genetic factors play a role in susceptibility to restenosis. Genetic variations between species can impact the likelihood and severity of restenosis.

f. Experimental Models: Animal models used to study restenosis may not perfectly replicate the human condition.
Differences in the choice of animal models, such as rodents, rabbits, or pigs, can lead to variations in observed restenosis mechanisms and outcomes. Researchers studying restenosis often use animal models to understand the underlying mechanisms and to test potential therapeutic interventions. While animal models provide valuable insights, it’s important to recognize that there may be differences between animals and humans in terms of the exact progression and regulation of restenosis. When extrapolating findings from animal studies to human patients, researchers need to consider these species-specific differences and conduct further studies to validate the findings in the clinical context.

3. Cardiovascular Effects of Quercetin: Mechanisms and Implications for Health

Restenosis is a vexing challenge in both veterinary and human medicine. Despite advances in treatment modalities, the high prevalence of restenosis necessitates further research to develop effective therapeutic strategies. In this context, quercetin, a naturally occurring flavonoid abundantly found in fruits, vegetables, and herbs, has emerged as a promising candidate for managing restenosis due to its potential cardiovascular benefits. This review aims to delve into the multifaceted cardiovascular effects of quercetin and explore the intricate mechanisms underpinning its influence on restenosis in both animal models and human patients. Quercetin exhibits a remarkable impact on the cardiovascular system, making it a focal point in managing restenosis [38]. Its potent antioxidant properties play a pivotal role in scavenging reactive oxygen species (ROS) in vascular tissues, thus reducing oxidative stress, and preserving endothelial cell integrity [39]. The protection of endothelial function is paramount in preventing endothelial dysfunction, a key factor associated with restenosis. Additionally, quercetin’s anti-inflammatory effects are essential in suppressing pro-inflammatory cytokines and inhibiting inflammatory signalling pathways [40]. These actions effectively reduce vascular inflammation and mitigate endothelial activation, thus mitigating the risk of atherosclerosis and restenosis [41].

3.1 Mechanisms of Action on Restenosis.

3.1.1 Inhibition of Vascular Smooth Muscle Cell (VSMC) Proliferation and Migration

Quercetin has been shown to effectively inhibit the proliferation and migration of VSMCs, which are key processes in the development of restenosis. Upon vascular injury, VSMCs undergo a phenotypic switch from a contractile to a synthetic phenotype, leading to excessive proliferation and migration, resulting in neointimal hyperplasia and subsequent vessel re-narrowing [42]. The ability of quercetin to alter essential regulatory proteins including cyclin-dependent kinases (CDKs), plays a pivotal role in arresting the cell cycle of VSMCs, thereby reducing their proliferation [40]. Furthermore, quercetin inhibits the expression and activity of matrix metalloproteinases (MMPs), which are responsible for the breakdown of extracellular matrix, preventing VSMC migration and neointimal formation [40].

3.1.2 Promotion of Endothelial Nitric Oxide (NO) Production

Endothelial dysfunction is a critical component of restenosis development, as it compromises vascular integrity and function. Quercetin enhances the production of endothelial nitric oxide (NO), a potent vasodilator, by upregulating endothelial nitric oxide synthase (eNOS) expression [43]. Increased NO bioavailability contributes to improved vasodilation, reduced inflammation, and maintenance of endothelial homeostasis, promoting healthy vascular function and mitigating the risk of restenosis [44].
3.1.3 Anti-Inflammatory and Antioxidant Actions

Quercetin's anti-inflammatory and antioxidant properties also play crucial roles in mitigating restenosis. Inflammation is a significant driver of restenosis, and quercetin's ability to inhibit pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha), helps dampen the inflammatory response within the vessel wall [6]. Additionally, quercetin acts as a potent scavenger of reactive oxygen species (ROS), reducing oxidative stress and preserving the structural and functional integrity of vascular tissues [45]. By curbing inflammation and oxidative stress, quercetin safeguards against endothelial damage and VSMC proliferation, further contributing to restenosis prevention.

3.1.4 Modulation of Signalling Pathways

Quercetin's regulatory effects extend to several signalling pathways implicated in restenosis pathogenesis. Notably, it has been found to suppress the mitogen-activated protein kinase (MAPK) signalling pathway, which is crucial for VSMC proliferation [14]. Additionally, quercetin inhibits the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which promotes VSMC survival and migration [43]. By targeting these signalling pathways, quercetin effectively hampers VSMC proliferation and migration, contributing to restenosis prevention.

3.2 Cardiovascular Effects of Quercetin: Insights from Multiple Studies

Several noteworthy studies have explored quercetin's potential therapeutic effects on restenosis. In a rat carotid artery balloon injury model, Huang et al. (2009) investigated quercetin's ability to attenuate restenosis. The study demonstrated that quercetin treatment significantly reduced neointimal formation and VSMC proliferation, shedding light on its potential for managing restenosis [46]. Similarly, Thipparaboina et al. (2003) evaluated quercetin's protective effects against restenosis in a porcine coronary artery stent model. Their findings showcased that quercetin treatment effectively inhibited inflammatory responses and reduced neointimal hyperplasia, underscoring its anti-inflammatory and anti-proliferative properties in the context of restenosis [47]. Dagner et al. (2014) conducted a study to examine quercetin's protective effects against radiation-induced endothelial cell apoptosis. Human umbilical vein endothelial cells were exposed to radiation, and quercetin was administered to assess its impact. The results indicated that quercetin protected endothelial cells against apoptosis through the PI3K/Akt pathway, implying its potential role in mitigating endothelial damage associated with restenosis [48]. Cheng et al. (2019) explored quercetin's anti-inflammatory effects in ARPE-19 cells. The study revealed that quercetin effectively inhibited IL-1beta-induced production of inflammatory cytokines and chemokines through the MAPK and NF-kappa signalling pathways. These findings suggest that quercetin's anti-inflammatory properties may be beneficial in reducing vascular inflammation associated with restenosis [49]. Moon et al. (2016) conducted a study to investigate the effect of quercetin on intimal hyperplasia in a rat carotid artery balloon injury model. Quercetin treatment significantly reduced neointimal hyperplasia and smooth muscle cell proliferation, indicating its potential as a restenosis-inhibiting agent [40]. These studies further support the notion that quercetin holds promise as a therapeutic agent in managing restenosis. The diverse range of research conducted in various animal models highlights quercetin's potential benefits in inhibiting neointimal hyperplasia, reducing smooth muscle cell proliferation, and suppressing vascular inflammation. Although more clinical trials are warranted to validate these findings in human patients, the evidence
from these studies emphasizes quercetin’s potential significance as a restenosis-targeting agent in both veterinary and human medicine.

4. Cardiovascular Effects of Resveratrol: Mechanisms and Implications for Health

Resveratrol exhibits remarkable effects on the cardiovascular system, making it a focal point in managing restenosis. Its potent antioxidant properties play a crucial role in scavenging reactive oxygen species (ROS) in vascular tissues, thereby reducing oxidative stress, and preserving endothelial cell integrity [50]. The preservation of endothelial function is vital in preventing endothelial dysfunction, a key factor associated with restenosis. Moreover, resveratrol's anti-inflammatory effects are pivotal in suppressing pro-inflammatory cytokines and inhibiting inflammatory signalling pathways [51]. These actions effectively mitigate vascular inflammation and reduce endothelial activation, thereby lowering the risk of atherosclerosis and restenosis.

4.1 Mechanisms of Action on Restenosis

4.1.2 Inhibition of Vascular Smooth Muscle Cell (VSMC) Proliferation and Migration

Resveratrol exerts a potent inhibitory effect on VSMC proliferation and migration, which are key processes contributing to neointimal hyperplasia and restenosis. Studies have demonstrated that resveratrol downregulates the expression of cyclin-dependent kinases (CDKs) and matrix metalloproteinases (MMPs) in VSMCs, leading to a reduction in their proliferation and migration [19, 52]. By modulating these critical regulatory proteins, resveratrol effectively hinders the excessive growth and movement of VSMCs, ultimately preventing the re-narrowing of blood vessels [52].

4.1.3 Antioxidant Properties and Reduction of Oxidative Stress

Resveratrol's potent antioxidant properties play a pivotal role in reducing oxidative stress within vascular tissues. By scavenging reactive oxygen species (ROS) and neutralizing free radicals, resveratrol protects endothelial cells from damage and preserves their function [53]. This antioxidative action is crucial in maintaining endothelial health and preventing endothelial dysfunction, a key factor associated with restenosis [53].

4.1.4 Anti-Inflammatory Effects and Suppression of Pro-Inflammatory Cytokines

The pathogenesis of restenosis includes inflammation significantly. Tumour necrosis factor-alpha (TNF-alpha) and interleukins are two pro-inflammatory cytokines that have been demonstrated to be suppressed by resveratrol, which lowers vascular inflammation [54]. Resveratrol reduces endothelial activation and the infiltration of immune cells into the vascular wall by inhibiting inflammatory signalling pathways, consequently lowering the risk of restenosis [55].

4.1.5 Activation of Endothelial Nitric Oxide (NO) Production

Endothelial Nitric Oxide (NO) production is critical for maintaining vascular homeostasis and function. Resveratrol has been found to promote endothelial NO production, leading to enhanced vasodilation and improved vascular endothelial function [54]. The increased bioavailability of NO supports optimal vascular tone and blood flow, contributing to overall cardiovascular health and reducing the likelihood of restenosis [55].
4.2. Cardiovascular Effects of Resveratrol: Insights from Multiple Studies

Several noteworthy studies have explored resveratrol’s potential therapeutic effects on restenosis. In a randomized clinical trial by Diaz et al. (2009), patients undergoing percutaneous coronary intervention (PCI) were administered resveratrol or placebo. The resveratrol group exhibited a significant reduction in restenosis rates and improved vascular function compared to the placebo group, indicating its potential as an adjunct therapy in PCI [56]. A study by Li et al. (2018), The article explores the potential of resveratrol in reducing oxidative stress induced by balloon injury in the rat carotid artery. It focuses on the mechanisms of action involving the ERK1/2 and NF-kappa B pathways. The study demonstrates that resveratrol effectively attenuates oxidative stress, which plays a crucial role in the pathogenesis of restenosis. These findings suggest that resveratrol may hold promise as a therapeutic agent for managing restenosis by targeting specific cellular signalling pathways associated with oxidative stress. A study by Zhang et al 2013 explores the potential of resveratrol in reducing oxidative stress induced by balloon injury in the rat carotid artery. It focuses on the mechanisms of action involving the ERK1/2 and NF-kappa B pathways. The study demonstrates that resveratrol effectively attenuates oxidative stress, which plays a crucial role in the pathogenesis of restenosis. These findings suggest that resveratrol may hold promise as a therapeutic agent for managing restenosis by targeting specific cellular signaling pathways associated with oxidative stress. Elmadhun et al. 2013, discuss the potential of pigs as a valuable animal model for studying the effects of resveratrol in preventing cardiovascular disease. The researchers emphasize the importance of using pigs due to their physiological similarities to humans, especially in terms of cardiovascular anatomy and function. The study highlights the cardiovascular benefits of resveratrol, a natural polyphenolic compound, and its potential to mitigate cardiovascular diseases, including restenosis. The authors explore the mechanisms of action of resveratrol in pigs, such as its antioxidant and anti-inflammatory properties, which may contribute to improved cardiovascular health. The findings suggest that using pigs as a model for resveratrol research could provide valuable insights for developing effective therapeutic strategies for cardiovascular diseases in both veterinary and human medicine Fields [57]. 

이미희, 2012 explores using bioactive compounds to prevent intimal hyperplasia in small-caliber vascular grafts, aiming to improve graft patency and long-term outcomes in vascular surgeries. These compounds, like growth factors and cytokines, can modulate cellular responses and promote a more favourable healing process, reducing inflammation and smooth muscle cell proliferation [58]. According to Gu et al.2006, the study investigates the effects of resveratrol on endothelial progenitor cells (EPCs) and their role in reendothelialization in rats with intima injury. Resveratrol treatment was found to enhance EPC function and promote their incorporation into the injured intima, contributing to improved reendothelialization. These findings suggest that resveratrol may have potential therapeutic benefits in promoting vascular healing and repair [59]. These preclinical studies provide valuable evidence supporting the potential therapeutic effects of resveratrol on restenosis in various animal models. However, it is essential to interpret these findings with caution, as results from animal studies may not directly translate to human clinical outcomes. Further research, including well-designed clinical trials, is necessary to validate the safety and efficacy of resveratrol in managing restenosis in humans.
Table 1. Summary of Mechanisms of Action and Cardiovascular Effects of Quercetin and Resveratrol in Restenosis.

<table>
<thead>
<tr>
<th>Mechanism/Effect</th>
<th>Quercetin</th>
<th>Resveratrol</th>
</tr>
</thead>
</table>
| Inhibition of VSMC Proliferation and Migration | - Alters cyclin-dependent kinases (CDKs) to arrest the VSMC cell cycle, reducing proliferation  
- Inhibits matrix metalloproteinases (MMPs) to prevent VSMC migration | - Downregulates CDKs and MMPs in VSMCs, suppressing proliferation and migration  
- Suppresses VSMC proliferation and migration |
| Promotion of Endothelial NO Production | - Upregulates endothelial nitric oxide synthase (eNOS) expression, enhancing NO production  
- Increases nitric oxide (NO) bioavailability for healthier vascular tone | - Promotes endothelial NO production, improving vasodilation and function  
- Enhances vascular endothelial function, contributing to reduced restenosis risk |
| Anti-Inflammatory and Antioxidant Actions | - Inhibits pro-inflammatory cytokines, such as IL-6 and TNF-alpha  
- Acts as a potent scavenger of reactive oxygen species (ROS), reducing oxidative stress | - Suppresses pro-inflammatory cytokines, reducing vascular inflammation  
- Scavenges ROS, mitigating oxidative stress and preserving endothelial integrity |
| Modulation of Signalling Pathways | - Suppresses mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways  
- Reduces neointimal hyperplasia through inhibition of VSMC growth  
- Enhances vascular NO levels, improving vasodilation and overall function  
- Mitigates inflammation and oxidative stress, protecting vascular tissues | - Modulates ERK1/2 and NF-kappa B pathways, influencing VSMC proliferation and survival  
- Reduces neointimal hyperplasia, limiting vessel re-narrowing  
- Enhances endothelial NO production, contributing to healthy vascular tone  
- Suppresses inflammation and oxidative stress, promoting cardiovascular health |
| Cardiovascular Effects | - Alters essential regulatory proteins, arresting VSMC cell cycle  
- Inhibits MMPs, preventing neointimal formation  
- Upregulates eNOS expression, increasing NO production  
- Modulates signalling pathways related to VSMC proliferation and migration | - Antioxidant properties scavenge ROS, protecting endothelial cells  
- Anti-inflammatory effects reduce endothelial activation  
- Potential benefits in small-caliber grafts for restenosis prevention |

Disclaimer: The following table presents a summary of the mechanisms of action discussed in the provided review.
5. Discussions

The comprehensive review of resveratrol and quercetin's cardiovascular effects and their potential in managing restenosis reveals promising therapeutic implications for both veterinary and human medicine. These natural polyphenolic compounds have demonstrated antioxidant, anti-inflammatory, and anti-proliferative properties, which play pivotal roles in preserving endothelial function, mitigating vascular inflammation, and inhibiting VSMC proliferation and migration. The mechanisms of action underlying their effects on restenosis involve modulation of key regulatory proteins, suppression of inflammatory signalling pathways, and promotion of endothelial NO production. Restenosis is a complex and multifactorial process that occurs in response to vascular injury, particularly after interventions such as angioplasty or stent placement. The primary goal of these procedures is to open narrowed or blocked blood vessels and restore blood flow. However, the healing process that follows can lead to excessive tissue growth within the vessel, resulting in restenosis and re-narrowing of the blood vessel. Resveratrol and quercetin's inhibitory effects on VSMC proliferation and migration hold promise for preventing neointimal formation and restenosis after vascular interventions. Additionally, their ability to reduce vascular inflammation and oxidative stress can contribute to preserving endothelial health and preventing endothelial dysfunction, crucial factors in restenosis management. The intriguing "French Paradox" further highlights the potential cardiovascular benefits of polyphenols, including resveratrol, found in red wine and polyphenol-rich foods. The observation of a low incidence of heart disease in the Southern French population despite a diet rich in saturated fats and cholesterol has piqued interest in exploring the effects of polyphenols on cardiovascular health, including their role in restenosis. The cardiovascular effects of resveratrol and quercetin observed in animal models suggest that their therapeutic potential might extend to both veterinary and human medicine. Clinical studies evaluating the effects of resveratrol and quercetin on restenosis in humans have also provided promising findings. Randomized clinical trials in patients undergoing percutaneous coronary intervention (PCI) have shown that resveratrol administration is associated with reduced restenosis rates and improved vascular function compared to placebo [60]. Despite the promising preclinical evidence, several challenges must be addressed before implementing resveratrol and quercetin as restenosis management strategies in veterinary and human medicine. One significant hurdle is the translational gap between animal models and human clinical trials. While animal studies provide essential insights into their mechanisms of action and safety, human trials are necessary to validate their efficacy and potential side effects in real-world scenarios. Moreover, the optimal dosing and formulation of resveratrol and quercetin for restenosis management need to be determined, ensuring maximum effectiveness while minimizing potential adverse effects. The investigation of a new drug delivery system presents a promising avenue in the context of restenosis management, specifically targeting the therapeutic potential of resveratrol and quercetin. A novel drug delivery approach seeks to overcome challenges related to the limited bioavailability, rapid degradation, and clearance of polyphenolic compounds, which can hinder their effectiveness in mitigating restenosis. By encapsulating resveratrol and quercetin within biocompatible carriers, such as nanoparticles or microparticles, this new drug delivery system enables precise and controlled release of the active substances at the site of injury. The localized delivery mechanism holds the potential for sustained release over an extended period following stent implantation, thereby providing a prolonged therapeutic effect during the critical phase of vascular healing and restenosis prevention. The advantages of this approach lie in its ability to optimize the concentration of active compounds at the injury site, enhancing their therapeutic efficacy and reducing the risk of off-target
effects or systemic toxicity. Furthermore, the controlled release kinetics ensure a continuous and targeted intervention, offering a more comprehensive and sustained response to restenosis. Despite the promising outlook, the successful translation of the new drug delivery system into clinical practice necessitates rigorous research and development. Key areas of focus include optimizing the carrier's biocompatibility, stability, and release profiles, as well as conducting thorough safety and efficacy assessments in preclinical and clinical settings. Such advancements in drug delivery technology hold substantial implications for the field of cardiovascular medicine. By leveraging the potential of this innovative approach, researchers and clinicians can improve restenosis management in both human and veterinary patients. However, challenges remain, such as ensuring regulatory compliance and addressing potential side effects, which require meticulous attention and further investigation.

6. Conclusion

In conclusion, the investigation of resveratrol and quercetin in the context of restenosis presents promising prospects for both human and veterinary medicine. Their antioxidant, anti-inflammatory, and anti-proliferative properties make them potential candidates for developing innovative therapeutic strategies. The exploration of a new drug delivery system offers a promising solution to enhance the therapeutic application of resveratrol and quercetin in restenosis management. The localized and sustained release of these polyphenolic compounds may revolutionize the approach to cardiovascular interventions, leading to more effective and targeted treatments for restenosis and ultimately improving patient outcomes in both veterinary and human medicine. As research progresses, a novel drug delivery system could become a transformative tool in the fight against restenosis, bridging the gap between scientific exploration and clinical application in the realm of cardiovascular health.

**Author Contributions:** Conceptualization, I.C.; writing—original draft preparation, I.C.; writing—review and editing, I.C.; visualization, I.C.; supervision, I.C. and F.G.B. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research received no external funding

**Institutional Review Board Statement:** Not applicable

**Conflicts of Interest:** The authors declare no conflict of interest.

**References**


58. 이미희, Application of bioactive compounds on small-caliber vascular graft for prevention of intimal hyperplasia. 2011, Graduate School, Yonsei University.

