Unravelling the Antioxidant Potential of Resveratrol and Quercetin in Animal Models: A Comprehensive Review
DOI:
https://doi.org/10.52331/cvj.v28i1.44Keywords:
polyphenols, therapeutic implications, animal modelsAbstract
Resveratrol and quercetin are naturally occurring polyphenolic compounds widely studied for their potential health benefits, particularly their antioxidant properties. This abstract provides an overview of the extensive research conducted on resveratrol and quercetin as antioxidants in animal models, highlighting their mechanisms of action and therapeutic potential. Animal models, such as rodents, have been instrumental in elucidating the oxidative stress pathway and evaluating the efficacy of various antioxidants. Resveratrol and quercetin have demonstrated significant antioxidant effects in animal models through multiple mechanisms. These include direct scavenging of reactive oxygen species (ROS), upregulation of endogenous antioxidant enzymes, inhibition of lipid peroxidation, and modulation of oxidative stress-related signaling pathways.
References
Park, E.-J.; Pezzuto, J. M. The pharmacology of resveratrol in animals and humans. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2015, 1852 (6), 1071-1113. DOI: https://doi.org/10.1016/j.bbadis.2015.01.014.
Elmadhun, N. Y.; Sabe, A. A.; Robich, M. P.; Chu, L. M.; Lassaletta, A. D.; Sellke, F. W. The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. Annals of the New York Academy of Sciences 2013, 1290 (1), 130-135.
Wang, G. J.; Judelson, D. R.; Goodney, P. P.; Bertges, D. J. Loss to follow-up 1 year after lower extremity peripheral vascu-lar intervention is associated with worse survival. Vascular Medicine (United Kingdom) 2019, 24 (4), 332-338. DOI: 10.1177/1358863X19853622.
Den Hartogh, D. J.; Tsiani, E. Health benefits of resveratrol in kidney disease: Evidence from in vitro and in vivo studies. Nutrients 2019, 11 (7), 1624.
Smoliga, J. M.; Vang, O.; Baur, J. A. Challenges of translating basic research into therapeutics: resveratrol as an example. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 2012, 67 (2), 158-167.
Mrkus, L.; Batinić, J.; Bjeliš, N.; Jakas, A. Synthesis and biological evaluation of quercetin and resveratrol peptidyl deriv-atives as potential anticancer and antioxidant agents. Amino acids 2019, 51, 319-329.
Urquiaga, I.; Leighton, F. Plant polyphenol antioxidants and oxidative stress. Biological research 2000, 33 (2), 55-64.
Davis, J. M.; Murphy, E. A.; Carmichael, M. D. Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 2009, 8 (4), 206-213. DOI: 10.1249/JSR.0b013e3181ae8959 From NLM.
Jia, R.; Li, Y.; Cao, L.; Du, J.; Zheng, T.; Qian, H.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2019, 215, 56-66.
Zhang, D.; Qi, B.-y.; Zhu, W.-w.; Huang, X.; Wang, X.-z. Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways. In-flammation Research 2020, 69, 267-278.
Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. International journal of molecular sci-ences 2007, 8 (9), 950-988.
Berman, A. Y.; Motechin, R. A.; Wiesenfeld, M. Y.; Holz, M. K. The therapeutic potential of resveratrol: a review of clinical trials. npj Precision Oncology 2017, 1 (1), 35. DOI: 10.1038/s41698-017-0038-6.
Aggarwal, B. B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004, 24 (5a), 2783-2840. From NLM.
Shukla, Y.; Singh, R. Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sci-ences 2011, 1215 (1), 1-8. Renaud, S. d.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet 1992, 339 (8808), 1523-1526. Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possi-ble explanation for the conundrum of the ‘French paradox’? European journal of endocrinology 1998, 138 (6), 619-620.
De La Lastra, C. A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implica-tions. Biochemical Society Transactions 2007, 35 (5), 1156-1160. Lee, M.; Lin, W.; Yu, B.; Lee, T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australasian journal of ani-mal sciences 2017, 30 (3), 299.
Aminjan, H. H.; Abtahi, S. R.; Hazrati, E.; Chamanara, M.; Jalili, M.; Paknejad, B. Targeting of oxidative stress and in-flammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sciences 2019, 232, 116607.
Du, P.; Song, J.; Qiu, H.; Liu, H.; Zhang, L.; Zhou, J.; Jiang, S.; Liu, J.; Zheng, Y.; Wang, M. Polyphenols Extracted from Shan-xi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264. 7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules 2021, 26 (9), 2745.
Gertz, M.; Nguyen, G. T. T.; Fischer, F.; Suenkel, B.; Schlicker, C.; Fränzel, B.; Tomaschewski, J.; Aladini, F.; Becker, C.; Wolters, D. A molecular mechanism for direct sirtuin activation by resveratrol. PloS one 2012, 7 (11), e49761.
Kaeberlein, M.; McDonagh, T.; Heltweg, B.; Hixon, J.; Westman, E. A.; Caldwell, S. D.; Napper, A.; Curtis, R.; DiStefano, P. S.; Fields, S. Substrate-specific activation of sirtuins by resveratrol. Journal of Biological Chemistry 2005, 280 (17), 17038-17045.
Cheng, K.; Song, Z.; Chen, Y.; Li, S.; Zhang, Y.; Zhang, H.; Zhang, L.; Wang, C.; Wang, T. Resveratrol protects against renal damage via attenuation of inflammation and oxidative stress in high-fat-diet-induced obese mice. Inflammation 2019, 42, 937-945.
Yu, D.; Xiong, J.; Gao, Y.; Li, J.; Zhu, D.; Shen, X.; Sun, L.; Wang, X. Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury. Acta Histo-chemica 2021, 123 (5), 151739.
Ibrahim, A.; Al-Hizab, F. A.; Abushouk, A. I.; Abdel-Daim, M. M. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Frontiers in pharmacology 2018, 9, 1268.
Wang, N.; He, J.; Pan, C.; Wang, J.; Ma, M.; Shi, X.; Xu, Z. Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Frontiers in Neuroscience 2019, 13, 859.
Li, F.; Han, Y.; Cai, X.; Gu, M.; Sun, J.; Qi, C.; Goulette, T.; Song, M.; Li, Z.; Xiao, H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food & function 2020, 11 (1), 1063-1073.
Wang, H.; Jiang, T.; Li, W.; Gao, N.; Zhang, T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicology letters 2018, 282, 100-108.
Hu, Q.; Yang, C.; Zheng, F.; Duan, H.; Fu, Y.; Cheng, Z. Acute lung injury inhibition by juglone in LPS induced sepsis mouse model involves Sirt1 activation. Tropical Journal of Pharmaceutical Research 2020, 19 (5), 1001-1007.
Barger, J. L.; Kayo, T.; Vann, J. M.; Arias, E. B.; Wang, J.; Hacker, T. A.; Wang, Y.; Raederstorff, D.; Morrow, J. D.; Leeu-wenburgh, C. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS one 2008, 3 (6), e2264.
Lan, T.-y.; Dun, R.-l.; Yao, D.-s.; Wu, F.; Qian, Y.-l.; Zhou, Y.; Zhan, T.-t.; Shao, M.-h.; Gao, J.-d.; Wang, C. Effects of resvera-trol on renal ischemia-reperfusion injury: A systematic review and meta-analysis. Frontiers in Nutrition 2022, 9.
Latief, U.; Ahmad, R. Herbal remedies for liver fibrosis: A review on the mode of action of fifty herbs. Journal of tradi-tional and complementary medicine 2018, 8 (3), 352-360. Abdu, S. B.; Al-Bogami, F. M. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi Journal of Biological Sciences 2019, 26 (1), 201-209.
Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology 2016, 56, 21-38. DOI: https://doi.org/10.1016/j.tifs.2016.07.004.
Materska, M. Quercetin and its derivatives: chemical structure and bioactivity-a review. Polish journal of food and nu-trition sciences 2008, 58 (4).
Boots, A. W.; Li, H.; Schins, R. P. F.; Duffin, R.; Heemskerk, J. W. M.; Bast, A.; Haenen, G. R. M. M. The quercetin paradox. Toxicology and Applied Pharmacology 2007, 222 (1), 89-96. DOI: https://doi.org/10.1016/j.taap.2007.04.004.
Perez-Vizcaino, F.; Duarte, J.; Andriantsitohaina, R. Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radical Research 2006, 40 (10), 1054-1065. DOI: 10.1080/10715760600823128. Arias, N.; Macarulla, M. T.; Aguirre, L.; Martínez-Castaño, M. G.; Portillo, M. P. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. Genes Nutr 2014, 9 (1), 361. DOI: 10.1007/s12263-013-0361-7 From NLM.
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutri-ents 2016, 8 (3), 167.
Chen, X.; Yu, J.; Zheng, L.; Deng, Z.; Li, H. Quercetin and lycopene co-administration prevents oxidative damage induced by d-galactose in mice. Food Bioscience 2022, 50, 102042. DOI: https://doi.org/10.1016/j.fbio.2022.102042.
Gugliandolo, E.; Peritore, A. F.; D’Amico, R.; Licata, P.; Crupi, R. Evaluation of Neuroprotective Effects of Quercetin against Aflatoxin B1-Intoxicated Mice. Animals 2020, 10 (5), 898.
Min, Y. D.; Choi, C. H.; Bark, H.; Son, H. Y.; Park, H. H.; Lee, S.; Park, J. W.; Park, E. K.; Shin, H. I.; Kim, S. H. Quercetin in-hibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflammation Research 2007, 56 (5), 210-215. DOI: 10.1007/s00011-007-6172-9.
Zhang, Q.-Y.; Pan, Y.; Wang, R.; Kang, L.-L.; Xue, Q.-C.; Wang, X.-N.; Kong, L.-D. Quercetin inhibits AMPK/TXNIP activa-tion and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. The Journal of Nutritional Biochemistry 2014, 25 (4), 420-428. DOI: https://doi.org/10.1016/j.jnutbio.2013.11.014. Jin, T.; Zhang, Y.; Botchway, B. O. A.; Huang, M.; Lu, Q.; Liu, X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomedicine & Pharmacotherapy 2023, 161, 114515. DOI: https://doi.org/10.1016/j.biopha.2023.114515.
Bhatiya, M.; Pathak, S.; Jothimani, G.; Duttaroy, A. K.; Banerjee, A. A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation. Archivum Im-munologiae et Therapiae Experimentalis 2023, 71 (1), 6. DOI: 10.1007/s00005-023-00669-w.
Sato, S.; Mukai, Y. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. Journal of In-flammation Research 2020, 13, 421-431. DOI: 10.2147/JIR.S228361.
Benameur, T.; Soleti, R.; Porro, C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients 2021, 13 (4), 1318. Khan, H.; Ullah, H.; Aschner, M.; Cheang, W. S.; Akkol, E. K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2020, 10 (1), 59.
Afifi, N. A.; Ibrahim, M. A.; Galal, M. K. Hepatoprotective influence of quercetin and ellagic acid on thioacetam-ide-induced hepatotoxicity in rats. Canadian Journal of Physiology and Pharmacology 2018, 96 (6), 624-629. DOI: 10.1139/cjpp-2017-0651 (acccessed 2023/06/09). Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Rastrelli, L.; Dag-lia, M.; Nabavi, S. F.; Alavian, S. M.; Nabavi, S. M. Hepatoprotective effect of quercetin: From chemistry to medicine. Food and Chemical Toxicology 2017, 108, 365-374. DOI: https://doi.org/10.1016/j.fct.2016.08.034. Peng, Z.; Gong, X.; Yang, Y.; Huang, L.; Zhang, Q.; Zhang, P.; Wan, R.; Zhang, B. Hepatoprotective effect of quercetin against LPS/d-GalN induced acute liver injury in mice by inhibiting the IKK/NF-κB and MAPK signal pathways. International Immunopharmacology 2017, 52, 281-289. DOI: https://doi.org/10.1016/j.intimp.2017.09.022.
Bondonno, N. P.; Bondonno, C. P.; Hodgson, J. M.; Ward, N. C.; Croft, K. D. The Efficacy of Quercetin in Cardiovascular Health. Current Nutrition Reports 2015, 4 (4), 290-303. DOI: 10.1007/s13668-015-0137-3. Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H.-S. Therapeutic potential of quercetin as a cardiovascular agent. European Jour-nal of Medicinal Chemistry 2018, 155, 889-904. DOI: https://doi.org/10.1016/j.ejmech.2018.06.053.
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M. J.; Wielinga, P. Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218 (1), 44-52. DOI: https://doi.org/10.1016/j.atherosclerosis.2011.04.023.
Rogerio, A. P.; Dora, C. L.; Andrade, E. L.; Chaves, J. S.; Silva, L. F. C.; Lemos-Senna, E.; Calixto, J. B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacological Research 2010, 61 (4), 288-297. DOI: https://doi.org/10.1016/j.phrs.2009.10.005.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Ioana Craciun, Florinel Gheorghe Brudasca

This work is licensed under a Creative Commons Attribution 4.0 International License.