Effect of Nigella sativa Seed Supplementation on Hematology, Acid-base Parameters, and Serum Biochemical Parameters in Nubian Goat Fed an Aflatoxin Contaminated Diet
DOI:
https://doi.org/10.52331/cvj.v28i2.48Keywords:
Aspergillus, Black seeds, Goat, Hemoglobin, Liver enzymes, TriglyceridesAbstract
This study aimed to investigate the effect of Nigella sativa (NS) seed supplementation on hematology, acid-base parameters, and serum biochemical parameters in Nubian goats fed an Aflatoxin-contaminated diet. In a completely randomized design, 20 growing male goats (aged 8-9 months; 11±0.5 kg) were allocated to five treatments (4 goats/treatment). The control group (G1) received a basal diet. The treatment groups received the same diet contaminated with 150 ppb Aflatoxin (G2), and other treatments received an Aflatoxin-contaminated diet supplemented with different levels of crushed NS seeds 2% (G3), 4% (G4), and 6% (G5). Blood samples were collected after 40 day feeding period to determine blood pH, glucose, hematological and biochemical parameters. Statistical analysis was performed to assess the significant differences among the treatments. Hemoglobin concentration (Hb), total erythrocytes count (TEC), mean corpuscular hemoglobin (MCH), serum total protein (TP), and globulins (GB) were significantly (P≤0.05) decreased by Aflatoxin-contaminated diet, whereas total leukocytes count (TLC) increased (P≤0.05). Supplementing NS seeds to an Aflatoxin-contaminated diet significantly (P≤0.05) increased Hb, TEC, TP, and GB. Lipid profile and serum liver enzymes were significantly (P≤0.05) increased by an Aflatoxin-contaminated diet. Supplementing NS seeds to an Aflatoxin-contaminated diet caused a decrease (P≤0.05) in lipid profile and serum liver enzymes. Supplementing NS seeds to an Aflatoxin-contaminated diet resulted in a good performance and improved physiological status, the superior effect to an Aflatoxin-contaminated diet supplemented with 6% NS seeds. The study recommended supplementing 6% NS seeds to goat diets to reduce suspected Aflatoxin contamination. Further investigations are needed to assess the protective effect of NS seeds in other animal species fed on Aflatoxin-contaminated diets.
References
Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins, vol. 14, 307, 2022. DOI: 10.3390/toxins14050307
Popescu, R.G.; Radulescu, A.L.; Georgescu, S.E.; Dinischiotu, A. Aflatoxins in Feed: Types, Metabolism, Health Conse-quences in Swine and Mitigation Strategies. Toxins, vol. 14, 853, 2022. DOI: 10.3390/toxins14120853
FDA (US. Food & Drug Administration). CPG Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds. 2019. Availa-ble online: https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/cpg-sec-683100-action-levels-aflatoxinsanimal-feeds (accessed on 10 September 2023).
European Union. Commission Regulation (EU) 2023/915 of 25 April 2023. On maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Official Journal of European Union, L119/103 – L119/157, 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915
Kaale, L.; Kimanya, M.; Macha, I.; Mlalila, N. Aflatoxin contamination and recommendations to improve its control: A review. World Mycotoxin Journal, vol. 14, pp. 27-40, 2021. DOI: 10.3920/WMJ2020.2599
Grace, D.; Lindahl, J.F.; Atherstone, C.; Kang’ethe, E.; Nelson, F.; Wesonga, T.; Manyong, V. Aflatoxin Standards for Feed. Building an Aflatoxin Safe East African Community Technical Policy Paper 7; International Institute of Tropical Agri-culture: Ibadan, Nigeria, 2015. Available at: https://cgspace.cgiar.org/bitstream/handle/10568/75535/Aflatoxin%20standards%20for%20feed.pdf?sequence=1 (ac-cessed on 10 September 2023).
Bodas, R.; Giraldez, F.J.; Olmedo, S.; Herrera, M.; Loran, S.; Arino, A.; Lopez, S.; Benito, A.; Juan, T. The Effects of Afla-toxin B1 Intake in Assaf Dairy Ewes on Aflatoxin M1 Excretion, Milk Yield, Haematology and Biochemical Profile. Animals, vol. 13, 436, 2023. DOI: 10.3390/ani13030436
Shi, H.; Peng, J.; Hao, J.; Wang, X.; Xu, M.; Li, S. Growth performance, digestibility, and plasma metabolomic profiles of Saanen goats exposed to different doses of aflatoxin B1. Journal of Dairy Science, vol. 105, no. 12, pp. 9552-9563, 2022. DOI: 10.3168/jds.2022-22129
Mora-Medina, R.; Lora-Benítez, A.J.; Molina-López, A.M.; Ayala-Soldado, N.; Moyano-Salvago, R. Effects of chronic low-dose aflatoxin B1 exposure in lactating Florida dairy goats. Journal of Dairy Science, vol. 106, no. 5, pp. 3641-3649, 2023. DOI: 10.3168/jds.2022-22704
Zhang, M.; Jiao, P.; Wang, X.; Sun, Y.; Liang, G.; Xie, X.; Zhang, Y. Evaluation of Growth Performance, Nitrogen Balance and Blood Metabolites of Mutton Sheep Fed an Ammonia-Treated Aflatoxin B1-Contaminated Diet. Toxins, vol. 14, 361, 2022. DOI: 10.3390/toxins14050361.
Ates, M.B.; Ortatatli, M.; Oguz, H.; Ozdemir, O.; Terzi, F.; Ciftci, M.K.; Hatipoglu, F. The ameliorative effects of Nigella sativa, thymoquinone, and bentonite against aflatoxicosis in broilers via AFAR and Nrf2 signalling pathways, and down-regulation of caspase-3. British Poultry Science, vol. 63, no. 3, pp. 332-339, 2022 DOI: 10.1080/00071668.2021.1998366
Elzoghby, R.; Barhoma, M.; Hamouda, A. Nigella sativa and Curcumin Ameliorative Effect on chicken broiler Aflatox-icosis Hazardous Effects. New Valley Veterinary Journal, vol. 2, no. 2, pp. 32-42, 2022. DOI: 10.21608/nvvj.2022.153571.1009
Mustafa, K.N.; Hıdayet, H.M.; Yateem, C.A. Effect of Supplementation of Nigella Sativa Oil on Nutrient Digestibility, Some Blood Metabolites and Rumen Parameters in Karadi Lambs. Yuzuncu Yil University Journal of Agricultural Sci-ences, vol. 32, no. 3, pp. 584-590, 2022. DOI: 10.29133/yyutbd.1104782
Singh, A.K.; Singh, P.; Kisku, U.; Kumar, A.; Kumar, S. Effects of dietary supplementation of Black Cumin (Nigella sativa) in small ruminants: A review. Indian Journal of Animal Health, vol. 61, no. 2, pp. 209-218, 2022. DOI: 10.36062/ijah.2022.09622
El-Saadany, S.A.; Habeeb, A.A.M.; El-Gohary, E.S.; El-Deeb, M.M.; Aiad, K.M. Effect of supplementation of oregano or Nigella sativa seeds to diets of lactating Zaraibi goats on milk yield and some physiological functions during summer season. Egyptian J. Anim. Prod, vol. 45, pp. 569–587, 2008.
Zanouny, A.I.; Abd-el-Moty, A.K.I.; El-Barody, M.A.A.; Sallam, M.T.; Abd-el-Hakeam, A.A. Effect of supplementation with Nigella sativa seeds on some blood metabolites and reproductive performance of Ossimi male lambs. Egyptian Journal of Sheep and Goat Sciences, vol. 8, no. 1, pp. 47–56, 2013.
Zeweil, H.S.; Ahmed, M.H.; El-Adawy, M.M.; Zaki, B. Evaluation of substituting nigella seed meal as a source of protein for soybean meal in diets of New Zealand white rabbits. in 9th World Rabbit congress, 10-13 June, Verona, Italy, pp. 863–868, 2008.
AboSaleh, S.; Salama, M.; Sherbini, E.; Hassan, M. The Possible Ameliorative Effect of Nigella Sativa on Aflatox-in-induced Liver Damage in Chicken. Alex J Vet Sci, vol. 63, no. 2, 113, 2019. DOI: 10.5455/ajvs.73879
Sobolev, V.S. Simple, rapid, and inexpensive cleanup method for quantitation of aflatoxins in important agricultural products by HPLC. J Agric Food Chem, vol. 55, no. 6, pp. 2136–2141, 2007. DOI: 10.1021/jf063669j
NRC. Nutrient requirement of poultry 7th ed, National Research Council, Nutritional Academy of Science, Washington, DC, USA.,” 1994.
AOAC “Association of Official Analytical Chemist,”. Official Methods of Analysis, 12th Editi. Washington, DC, 1980.
MAFF, Energy Allowance and Feeding System for Ruminants, Technical. London: HMSO, 1975.
Jain, N.C. Haematological techniques In: Schalm’s veterinary hematology, no. Edition 4. Lee and Febiger. Philadelphia, 1986.
Van Kampen, E.J.; Zijlstra, W.G. Standardization of hemoglobinometry II. The hemiglobincyanide method. Clinica chimica acta, vol. 6, no. 4, pp. 538–544, 1961. DOI: 10.1016/0009-8981(61)90145-0
Weiss, D.J.; Wardrop, K.J. Schalm’s veterinary hematology, 6th editio. John Wiley and Sons, Ltd., Publication, 2011.
Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Bio-chem, vol. 6, no. 1, pp. 24–27, 1969. DOI: 10.1177/000456326900600108
Constable, P.D.; Stämpfli, H.R.; Navetat, H.; Berchtold, J.; Schelcher, F. Use of a quantitative strong ion approach to de-termine the mechanism for acid-base abnormalities in sick calves with or without diarrhea. J Vet Intern Med, vol. 19, no. 4, pp. 581–589, 2005.
Ohnishi, S.T.; Barr, J.K. A simplified method of quantitating protein using the biuret and phenol reagents. Anal Biochem, vol. 86, no. 1, pp. 193–200, 1978. DOI: 10.1016/0003-2697(78)90334-2
Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clinica chimica acta, vol. 31, no. 1, pp. 87–96, 1971. DOI: 10.1016/0009-8981(71)90365-2
Evans, R.T. Manual and automated methods for measuring urea based on a modification of its reaction with diacetyl monoxime and thiosemicarbazide. J Clin Pathol, vol. 21, no. 4, pp. 527–532, 1968. DOI: 10.1136/jcp.21.4.527
Henry, R.J. Clinical Chemistry, Principles and Techniques, 2nd Editio. Harper and Row, eds, 1974.
Frings, C.S.; Dunn, R.T. A colorimetric method for determination of total serum lipids based on the sul-fo-phospho-vanillin reaction. Am J Clin Pathol, vol. 53, no. 1, pp. 89–91, 1970. DOI: 10.1093/ajcp/53.1.89
Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen per-oxide. Clin Chem, vol. 28, no. 10, pp. 2077–2080, 1982.
Svensson, L.; Elg, P.; Rasmussen, M.; Skrede, S.; Björkhem, I. A possible model for accuracy control of determination of serum cholesterol with use of reference methods: A NORDKEM project. Scand J Clin Lab Invest, vol. 42, pp. 99–105, 1982. DOI: 10.1080/00365518209168058
Friedman, R.B.; Young, D.S. Effects of disease on clinical laboratory tests, 3rd Edition, 3rd Editio. AACC Press, Wash-ington, DC, 1997.
Tietz, D.; Aldroubi, A.; Schneerson, R.; Unser, M.; Chrambach, A. The distribution of particles characterized by size and free mobility within polydisperse populations of protein‐polysaccharide conjugates, determined from two‐dimensional agarose electropherograms. Electrophoresis, vol. 12, no. 1, pp. 46–54, 1991. DOI: 10.1002/elps.1150120109
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol, vol. 28, no. 1, pp. 56–63, 1957. DOI: 10.1093/ajcp/28.1.56
Moss, D.W.; Baron, D.N.; Walker, P.G.; Wilkinson, J.H. Standardization of clinical enzyme assays. J Clin Pathol, vol. 24, no. 8, pp. 740–743, 1971.
Szasz, G. Reaction-rate method for gamma-glutamyltransferase activity in serum. Clin Chem, vol. 22, no. 12, pp. 2051–2055, 1976. DOI: 10.1093/clinchem/22.12.2051
Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics McGraw-Hill Book Co, 2nd ed., vol. 481. 1980.
Oguz, H.; Kececi, T.; Birdane, Y.O.; Önder, F.; Kurtoglu, V. Effect of clinoptilolite on serum biochemical and haematolog-ical characters of broiler chickens during aflatoxicosis. Res Vet Sci, vol. 69, no. 1, pp. 89–93, 2000. DOI: 10.1053/rvsc.2000.0395
Abdel-Wahhab, M.A.; Nada, S.A.; Khalil, F.A. Physiological and toxicological responses in rats fed aflatox-in-contaminated diet with or without sorbent materials. Anim Feed Sci Technol, vol. 97, no. 3–4, pp. 209–219, 2002. DOI: 10.1016/S0377-8401(01)00342-X
Yousef, M.I.; Salem, M.H.; Kamel, K.I.; Hassan, G.A.; El‐Nouty, F.D. Influence of ascorbic acid supplementation on the haematological and clinical biochemistry parameters of male rabbits exposed to aflatoxin B1. Journal of environmental science and health, part B, vol. 38, no. 2, pp. 193–209, 2003. DOI: 10.1081/PFC-120018449
Habeeb, A.A.M.; El Tarabany, A.A. Effect of Nigella sativa or Curcumin on daily body weight gain, feed intake and some physiological functions in growing Zaraibi goats during hot summer season. Arab Journal of Nuclear Science and Applications, vol. 45, no. 3, pp. 1–12, 2012.
Weiss, D.J. Myelonecrosis and acute inflammation, 6th Editio. Wiley–Blackwell, USA, 2010.
Al-Saleh, I.A.; Billedo, G.; El-Doush, I.I. Levels of selenium, dl-α-tocopherol, dl-γ-tocopherol, all-trans-retinol, thymo-quinone and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analysis, vol. 19, no. 2–3, pp. 167–175, 2006. DOI: 10.1016/j.jfca.2005.04.011
Awadallah, I.M. Effect of supplementation with niacin and Nigella Sativa seeds on Friesian calves under heat stress conditions. J AgricSci, Mansoura Univ, vol. 27, no. 2, pp. 791–801, 2002. DOI: 10.21608/JAPPMU.2002.253331
Omer, S.M.E. Effect of black seed (Nigella Sativa) supplementation on rabbits performance and some blood parameters. M.Sc. Thesis, University of Khartoum, 2008.
Awadalla, I.M.; Gehad, A.E. Effect of supplementing growing sheep rations with black cumin seeds (Nigella sativa). J. Agric. Sci.(Mansoura University), vol. 28, pp. 185–194, 2003. DOI: 10.21608/jappmu.2003.242185
Tousson, E.; El-Moghazy, M.; El-Atrsh, E. The possible effect of diets containing Nigella sativa and Thymus vulgaris on blood parameters and some organs structure in rabbit. Toxicol Ind Health, vol. 27, no. 2, pp. 107–116, 2011. DOI: 10.1177/0748233710381891
Al-Beitawi, N.A.; El-Ghousein, S.S.; Nofal, A.H. Replacing bacitracin methylene disalicylate by crushed Nigella sativa seeds in broiler rations and its effects on growth, blood constituents and immunity. Livest Sci, vol. 125, no. 2–3, pp. 304–307, 2009. DOI: 10.1016/j.livsci.2009.03.012
Ahmed, S.; Mahmood, R.; Muhammad, A.R.; Mohsin, I.; Chishti, G.A.; Javed, M.Q. Effect of Nigella Sativa Seeds on Growth, Nutrients Digestibility and Some Blood Metabolites in Male Beetal Goats. Journal of Animal and Plant Sciences, vol. 32, no. 5, pp. 1194-1199, 2022. DOI: 10.36899/JAPS.2022.5.0525
El-Bagir, N.M.; Hama, A.Y.; Hamed, R.M.; Abd El Rahim, A.G.; Beynen, A.C. Lipid composition of egg yolk and serum in laying hens fed diets containing black cumin (Nigella sativa). Int J Poult Sci, vol. 5, no. 6, pp. 574–578, 2006. DOI: 10.3923/ijps.2006.574.578
Brunton, L.L. Agents affecting gastrointestinal water flux and motility, digestants and bile acids, The pharmacological basis of therapeutic, 8th Editio. 8th Edition, Pregman Press, 1998.
El-Dakhakhny, M.; Barakat, M.; Abd El-Halim, M.; Aly, S.M. Effects of Nigella sativa oil on gastric secretion and etha-nol induced ulcer in rats. J Ethnopharmacol, vol. 72, no. 1–2, pp. 299–304, 2000. DOI: 10.1016/S0378-8741(00)00235-X
Uma Maheswari, K.; Dilara, K.; Vadivel, S.; Johnson, P.; Jayaraman, S. A review on hypo-cholesterolemic activity of Ni-gella sativa seeds and its extracts. Bioinformation, vol. 18, no. 4, pp. 343–348, 2022. DOI: 10.6026/97320630018343
Karakilcik, A.Z.; Zerin, M.; Arslan, O.; Nazligul, Y.; Vural, H. Effects of vitamin C and E on liver enzymes and biochem-ical parameters of rabbits exposed to aflatoxin B1. Vet Hum Toxicol, vol. 46, no. 4, pp. 190–192, 2004.
Rastogi, R.; Srivastava, A.K.; Rastogi, A.K. Biochemical changes induced in liver and serum of aflatoxin B1‐treated male wistar rats: preventive effect of picroliv. Pharmacol Toxicol, vol. 88, no. 2, pp. 53–58, 2001. DOI: 10.1034/j.1600-0773.2001.088002053.x
Madheswaran, R.; Balachandran, C.; Manohar, B.M. Influence of dietary culture material containing aflatoxin and T 2 toxin on certain serum biochemical constituents in Japanese quail. Mycopathologia, vol. 158, no. 3, pp. 337–341, 2004. DOI: 10.1007/s11046-005-8399-8
Oğuz, H.; Kurtoğlu, F.; Kurtoğlu, V.; Bırdane, Y.O. Evaluation of biochemical characters of broiler chickens during die-tary aflatoxin (50 and 100 ppb) and clinoptilolite exposure. Res Vet Sci, vol. 73, no. 1, pp. 101–103, 2002. DOI: 10.1016/S0034-5288(02)00040-1
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Mahmoud O. A. Elfaki, Nawal M. Elkhair
This work is licensed under a Creative Commons Attribution 4.0 International License.