The link between mammary cancer, excessive adipose tissue and cholesterol


  • Camelia Munteanu University of Agricultural Sciences and Veterinary Medicine, Department of Plant Culture Cluj-Napoca, Romania
  • Bianca Pop University of Agricultural Sciences and Veterinary Medicine, Department of Plant Culture Cluj-Napoca, Romania



cancer, esttrogen, hormones, cholesterol, obesity


Mammary cancer remains the most frequent worldwide type of cancer in females. From a health point of view, it is a huge challenge. As a definition, we can say that a group of biologically and molecularly heterogeneous diseases is represented by mammary cancer. An important causal factor for this disease is genetic predisposition, especially mutations in the BRCA1 or BRCA2 gene. The mammary gland is stimulated by hormones both morphologically and physiologically. The most significant of these are estrogens.

Estrogen is the main female hormone, but it is present in both females and males. Elevated levels of this hormone may increase the risk of developing mammary cancer. In post-climacteric excessive adipose tissue, estrogens biosynthesis is catalyzed by aromatase, converting adrenal androgens into estrogen. Risk factors for developing mammary cancer, such as excessive adipose tissue, age at menarche and the use of exogenous hormones may increase the risk of developing it.

The aim of this paper is to show the link between cholesterol, excessive adipose tissue, and the increased risk of developing mammary cancer.


Lee, K., Kruper, L., Dieli-Conwright, C. M., Mortimer, J. E. The Impact of Obesity on Breast Cancer Diagnosis and Treatment. Current oncology report 2019, 21(5), 41.

Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191-200. doi:10.5114/aoms.2013.33181

Balistreri, C. R., Caruso, C., Candore, G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators of inflammation 2010, 802078.

Mohanty, S. S., Mohanty, P. K. Obesity as potential breast cancer risk factor for postmenopausal women. Genes & Disease 2021, 8(2), 117-123.

Hamilton, K. J., Hewitt, S. C., Arao, Y., Korach, K. S. Estrogen Hormone Biology. Current topics in developmental biology 2017 125, 109–146.

Brisken, C., O'Malley, B. Hormone action in the mammary gland. Cold Spring Harbor perspectives in biology 2010, 2(12), a003178.

Liedtke, S., Schmidt, M. E., Vrieling, A., Lukanova, A., Becker, S., Kaaks, R., Zainedin, A.K., Buck, K., Ben-ner, A., Chang-Claude, J., Steindorf, K. Postmenopausal sex hormones in relation to body fat distribu-tion. Obesity 2012, 20(5), 1088-1095.

Purohit, A., Reed, M. J. Regulation of estrogen synthesis in postmenopausal women. Steroids 2002, 67(12), 979-983.

Mullooly, M., Yang, H. P., Falk, R. T., Nyante, S. J., Cora, R., Pfeiffer, R. M., Radisky, D.C., Visscher, D.W., Hartmann, L.C., Carter, J.M., Degnim, A.C., Stanczyk, F.Z., Figueroa, J.D., Garcia-Closas, M., Lissowska, J., Troester, M.A., Hewitt, S.M., Brinton L.A., Sherman M.E., Gierach, G. L. Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Research 2017, 19(1), 1-10.

Key, T. J., Appleby, P. N., Reeves, G. K., Travis, R. C., Brinton, L. A., Helzlsouer, K. J., Dorgan, J.F., Gapstur, S.M., Gaudet, M.M., Kaaks, R., Riboli, E., Rinaldi, S., Manjer, J., Hallmans, G., Giles, G.G., Marchand, L.LE, Kolonel, L.N., Henderson, B.E., Tworoger, S.S., Hankinson, S.E., Zeleniuch-Jacquotte A., Koenig, K., Krogh, V., Sieri, S., Muti, P., Ziegler, R.G., Schairer, C., Furhman, B.J., Barrett-Conner, E., Laughlin, G.A., Grant, E.J., Cologne, J., Ohishi, W., Hida, A., Cauley, J.A., Fourkala, E.O., Menon, U., Rohan, T.E., Strickler, H.D., Gunter, M. J. Endogenous Hormones and Breast Cancer Collaborative Group. Steroid hormone measurements from different types of assays in relation to body mass index and breast cancer risk in postmenopausal women: reanalysis of eighteen prospective studies. Steroids 2015, 99(Pt A), 49-55.

Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y.Y., Meulle, A., Salles, B., Go-nidec, L.S., Garrido, I., Escourrou, G., Valet, P., Muller, C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer research 2011, 71(7), 2455-2465.

Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 2004; 4:839–49.

Kim, J. H., Bachmann, R. A., Chen, J. Interleukin‐6 and insulin resistance. Vitamins & Hormones 2009, 80, 613-633.

Makki, K., Froguel, P., Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN inflammation 2013, 139239.

Chaudhary, R., Garg, J., Shah, N., Sumner, A. PCSK9 inhibitors: A new era of lipid-lowering therapy. World journal of cardiology 2017, 9(2), 76–91.

Fattori, E., Cappelletti, M., Lo Surdo, P., Calzetta, A., Bendtsen, C., Ni, Y. G., Pandit, S., Sitlani, A., Mesiti, G., Carfí, A., Monaci, P. Immunization against proprotein convertase subtilisin-like/Kexin type 9 lowers plasma LDL-cholesterol levels in mice. Journal of lipid research 2012, 53(8), 1654–1661.

Klop, B., Elte, J. W., Cabezas, M. C. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013, 5(4), 1218–1240.

Onat, S., Ates, G., Avcı, A., Yıldız, T., Birak, A., Ozmen, C. A., Ulku, R. The role of mediastinoscopy in the diagnosis of non-lung cancer diseases. Therapeutics and clinical risk management 2017, 13, 939.

La Vecchia C, Giordano SH, Hortobagyi GN, Chabner B. Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle. Oncologist. 2011;16(6):726-729. doi:10.1634/theoncologist.2011-0050

Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., Dietz, W. H. The disease burden associated with overweight and obesity. Jama 1999, 282(16), 1523-1529.

Nelson, E. R., Chang, C. Y., McDonnell, D. P. Cholesterol and breast cancer pathophysiology. Trends in Endocrinology & Metabolism 2014, 25(12), 649-655.

Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, Hercberg S, Galan P, Druesne-Pecollo N, Lati-no-Martel P. Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr. 2015, 14;114(3):347-57. doi: 10.1017/S000711451500183X. Epub 2015 Jul 15. PMID: 26173770.

Salonen, J. T. Risk of cancer and death in relation to serum cholesterol: a longitudinal study in an eastern Finnish population with high overall cholesterol level. American journal of epidemiology 1982, 116(4), 622-630.

Guo, H., Callaway, J. B., Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine 2015, 21(7), 677-687.

Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N.J., Pillai, R.V., Sullivan, P.M., Sondhi, V., Umetani, M., Geradts, J., McDonnell, D. P. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013, 342(6162), 1094-1098.

Oliver, M. F. (1981). Serum cholesterol-the knave of hearts and the joker. The Lancet, 318(8255), 1090-1095.

Shinitzky, M. Membrane fluidity and receptor function. In Membrane fluidity. Springer 1984, pp. 585-601. Boston, MA.

Nelson, E. R. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Molecular and cellular endocrinology 2018, 466, 73-80.

Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., McDonald, J. G., Yuhanna, I. S., Thompson, B., Girard, L., Mineo, C., Brekken, R.A., Umetani, M., Euhus, D.M., Xie, Y., Shaul, P. W. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell reports 2013, 5(3), 637-645.

Picon-Ruiz, M., Morata-Tarifa, C., Valle-Goffin, J. J., Friedman, E. R., Slingerland, J. M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA: a cancer journal for clinicians 2017 67(5), 378–397.

Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Frontiers in physiology 2020, 10, 1607.

Simons, P. J., van den Pangaart, P. S., van Roomen, C. P., Aerts, J. M., Boon, L. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis fac-tor-α-and interleukin-1β-treated human preadipocytes are potent leptin producers. Cytokine 2005, 32(2), 94-103.

Kern, P. A., Ranganathan, S., Li, C., Wood, L., Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American Journal of Physiology-Endocrinology And Metabolism 2001, 280(5), E745-E751.

Thelen, K. M., Lütjohann, D., Vesalainen, R., Janatuinen, T., Knuuti, J., von Bergmann, K., Lehtimäki, T., Laaksonen, R. Effect of pravastatin on plasma sterols and oxysterols in men. European journal of clinical pharmacology 2006, 62(1), 9-14.




How to Cite

Munteanu, C. and Pop, B. (2021) “The link between mammary cancer, excessive adipose tissue and cholesterol”, Cluj Veterinary Journal, 26(3), pp. 21–27. doi: 10.52331/cvj.v26i3.35.