Decoding the Polyphenol Impact on the Cardiovascular System: A Journey from the French Paradox to Restenosis
Polyphenols and Cardiovascular Health: Insights from the French Paradox and Restenosis
DOI:
https://doi.org/10.52331/cvj.v28i2.46Keywords:
quercetin, resveratrol, restenosisAbstract
Resveratrol and quercetin, two natural polyphenolic compounds, exhibit potential in veterinary and human medicine for cardiovascular benefits, particularly for the prevention and management of restenosis, a complex process involving blood vessel re-narrowing. This review investigates the impact of these compounds on restenosis in animal models, explaining their modes of action, which include antioxidant, anti-inflammatory, and anti-proliferative capabilities. Additional insights are provided by the intriguing "French Paradox," in which the Southern French population's low heart disease incidence is associated with red wine and polyphenol-rich diet consumption. Through animal models, we gain essential knowledge about the therapeutic potential, safety, and dosing of resveratrol and quercetin in both veterinary and human clinical settings. Understanding their precise molecular pathways is essential in enhancing their effectiveness in reducing restenosis. The "French Paradox" draws attention to the potential cardiovascular benefits of polyphenols in restenosis. Novel approaches to minimize restenosis in veterinary and human medicine may result from bridging the gap between animal models and human trials.
References
Narayanaswamy, M., K.C. Wright, and K. Kandarpa, Animal models for atherosclerosis, restenosis, and endovascular graft research. Journal of vascular and interventional radiology: JVIR, 2000. 11(1): p. 5-17. DOI: 10.1016/s1051-0443(07)61271-8.
Virmani, R. and A. Farb, Pathology of in-stent restenosis. Current opinion in lipidology, 1999. 10(6): p. 499-506.
Koskinas, K.C., et al., Role of endothelial shear stress in-stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. Journal of the American College of Cardiology, 2012. 59(15): p. 1337-1349. DOI: 10.1016/j.jacc.2011.10.903.
Schwartz, R.S., et al., Differential neointimal response to coronary artery injury in pigs and dogs. Implications for restenosis models. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994. 14(3): p. 395-400. DOI: 10.1161/01.atv.14.3.395.
LU, A., et al., The effect of magnetic stent on coronary restenosis after percutaneous transluminal coronary angioplasty in dogs. Chinese Medical Journal, 2001. 114(08): p. 821-823.
Tsang, H.-G., et al., Large animal models of cardiovascular disease. Cell biochemistry and function, 2016. 34(3): p. 113-132.
Schwartz, R.S., et al., Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. Journal of the American College of Cardiology, 1992. 19(2): p. 267-274. DOI: 10.1016/0735-1097(92)90476-4.
Sun, F., et al., Interventional cardiovascular techniques in small animal practice—diagnostic angiography and balloon valvuloplasty. Journal of the American Veterinary Medical Association, 2005. 227(3): p. 394-401. DOI: 10.2460/javma.2005.227.394.
Ebert, M.L., et al., Animal models of neointimal hyperplasia and restenosis: species-specific differences and implications for translational research. Basic to Translational Science, 2021. 6(11): p. 900-917. DOI: 10.1016/j.jacbts.2021.06.006.
Davis, C., et al., The role of inflammation in vascular injury and repair. Journal of Thrombosis and Haemostasis, 2003. 1(8): p. 1699-1709. DOI: 10.1046/j.1538-7836.2003. 00292.x.
Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev, Vascular smooth muscle cell in atherosclerosis. Acta physiologica, 2015. 214(1): p. 33-50. DOI: 10.1111/apha.12466
Mohindra, R., D.K. Agrawal, and F.G. Thankam, Altered vascular extracellular matrix in the pathogenesis of atherosclerosis. Journal of cardiovascular translational research, 2021: p. 1-14. DOI: 10.1007/s12265-020-10091-8
Kibos, A., A. Campeanu, and I. Tintoiu, Pathophysiology of coronary artery in‐stent restenosis. Acute cardiac care, 2007. 9(2): p. 111-119. DOI: 10.1080/17482940701263285.
Bertelli, A.A. and D.K. Das, Grapes, wines, resveratrol, and heart health. Journal of cardiovascular pharmacology, 2009. 54(6): p. 468-476. DOI: 10.1097/FJC.0b013e3181bfaff3.
Di Santo, A., et al., Resveratrol and quercetin down-regulate tissue factor expression by human stimulated vascular cells. Journal of Thrombosis and Haemostasis, 2003. 1(5): p. 1089-1095. DOI: 10.1046/j.1538-7836.2003.00217.x.
Nicholson, S.K., G.A. Tucker, and J.M. Brameld, Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proceedings of the Nutrition Society, 2008. 67(1): p. 42-47. DOI: 10.1017/S0029665108006009.
Forte, A., et al., Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clinical science, 2014. 127(11): p. 615-634. DOI: 10.1042/CS20140131.
Chen, Y.-H., et al., Anti-inflammatory effects of different drugs/agents with antioxidant property on endothelial expression of adhesion molecules. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 2006. 6(4): p. 279-304. DOI: 10.2174/187152906779010737.
Mirhadi, E., et al., Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacological Research, 2021. 163: p. 105287. DOI: 10.1016/j.phrs.2020.105287.
Li, J., et al., Resveratrol: Potential Application in Sepsis. Front Pharmacol, 2022. 13: p. 821358.
Kleinedler, J.J., et al., Synergistic effect of resveratrol and quercetin released from drug‐eluting polymer coatings for endovascular devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 99(2): p. 266-275. DOI: 10.1002/jbm.b.31894.
Zhu, Y., et al., Restenosis inhibition and re-differentiation of TGFβ/Smad3-activated smooth muscle cells by resveratrol. Scientific Reports, 2017. 7(1): p. 41916. DOI: 10.1038/srep41916.
Upadhyay, S. and M. Dixit, Role of polyphenols and other phytochemicals on molecular signaling. Oxidative medicine and cellular longevity, 2015. DOI: 10.1155/2015/504253.
Aghababaei, F. and M. Hadidi, Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals, 2023. 16(7): p. 1020.
Frombaum, M., et al., Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie, 2012. 94(2): p. 269-276. DOI: 10.1016/j.biochi.2011.11.001.
Renaud, S.d. and M. de Lorgeril, Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 1992. 339(8808): p. 1523-1526. DOI: 10.1016/0140-6736(92)91277-f.
Burr, M.L., Explaining the French paradox. Journal of the Royal Society of Health, 1995. 115(4): p. 217-219.
Renaud, S. and J.-C. Ruf, The French paradox: vegetables or wine. Circulation, 1994. 90(6): p. 3118-3119.
Thanyasiri, P., et al., Endothelial dysfunction and restenosis following percutaneous coronary intervention. International journal of cardiology, 2007. 119(3): p. 362-367. DOI: 10.1016/j.ijcard.2006.08.015.
Kearney, M., et al., Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation, 1997. 95(8): p. 1998-2002. DOI: 10.1161/01.cir.95.8.1998.
Jones, D.W., et al., Growing impact of restenosis on the surgical treatment of peripheral arterial disease. Journal of the American Heart Association, 2013. 2(6): p. e000345. DOI: 10.1161/JAHA.113.000345.
Hajibandeh, S., et al., Treatment strategies for in-stent restenosis in peripheral arterial disease: a systematic review. Interactive cardiovascular and thoracic surgery, 2019. 28(2): p. 253-261. DOI: 10.1093/icvts/ivy233.
Kantor, B., et al., The experimental animal models for assessing treatment of restenosis. Cardiovascular radiation medicine, 1999. 1(1): p. 48-54. DOI: 10.1016/s1522-1865(98)00005-5.
Iqbal, J., et al., Role of animal models in coronary stenting. Annals of biomedical engineering, 2016. 44: p. 453-465.
Scott, N.A., Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Advanced drug delivery reviews, 2006. 58(3): p. 358-376. DOI: 10.1016/j.addr.2006.01.015.
Dardik, A., et al., Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1α. Journal of Vascular Surgery, 2005. 41(2): p. 321-331. DOI: 10.1016/j.jvs.2004.11.016.
Ebert, M.L.A., et al., Animal Models of Neointimal Hyperplasia and Restenosis. JACC: Basic to Translational Science, 2021. 6(11): p. 900-917. DOI: 10.1016/j.jacbts.2021.06.006.
Frishman, W.H., P. Beravol, and C. Carosella, Alternative and Complementary Medicine for Preventing and Treating Cardiovascular Disease. Disease-a-Month, 2009. 55(3): p. 121-192. DOI: 10.1016/j.disamonth.2008.12.002.
Li, M.-T., et al., The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation. Frontiers in Pharmacology, 2021. 12. DOI: 10.3389/fphar.2021.732874.
Moon, S.-K., et al., Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochemical and biophysical research communications, 2003. 301(4): p. 1069-1078. DOI: 10.1016/s0006-291x(03)00091-3.
Fledderus, J., et al., The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. Journal of Personalized Medicine, 2021. 11(2): p. 103. DOI: 10.3390/jpm11020103.
Yoshizumi, M., et al., Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochemical and Biophysical Research Communications, 2002. 293(5): p. 1458-1465. DOI: 10.1016/S0006-291X(02)00407-2.
Heinz, S.A., et al., A 12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity or granulocyte phagocytosis in female human subjects. Br J Nutr, 2010. 104(6): p. 849-57. DOI: 10.1017/S000711451000156X.
Lin, X., et al., Quercetin improves vascular endothelial function through promotion of autophagy in hypertensive rats. Life Sciences, 2020. 258: p. 118106. DOI: 10.1016/j.lfs.2020.118106.
Min, Y.D., et al., Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflammation Research, 2007. 56(5): p. 210-215. DOI: 10.1007/s00011-007-6172-9.
Huang, B.-F., et al., The effect of quercetin on neointima formation in a rat artery balloon injury model. Pathology-Research and Practice, 2009. 205(8): p. 515-523. DOI: 10.1016/j.prp.2009.01.007.
Thipparaboina, R., W. Khan, and A.J. Domb, Eluting combination drugs from stents. International Journal of Pharmaceutics, 2013. 454(1): p. 4-10. DOI: 10.1016/j.ijpharm.2013.07.005.
Dagher, O., et al., Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021. 8. DOI: 10.3389/fcvm.2021.658400.
Cheng, K., et al., Protective effect of resveratrol against hepatic damage induced by heat stress in a rat model is associated with the regulation of oxidative stress and inflammation. Journal of thermal biology, 2019. 82: p. 70-75. DOI: 10.1016/j.jtherbio.2019.03.012.
Zhou, X., et al., Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death & Disease, 2014. 5(12): p. e1576-e1576. DOI: 10.1038/cddis.2014.530.
Cheng, C.K., et al., Pharmacological basis and new insights of resveratrol action in the cardiovascular system. British Journal of Pharmacology, 2020. 177(6): p. 1258-1277. DOI: 10.1111/bph.14801.
Clare, J., et al., The mechanisms of restenosis and relevance to next generation stent design. Biomolecules, 2022. 12(3): p. 430. DOI: 10.3390/biom12030430.
Ara, C., et al., Protective effect of resveratrol against oxidative stress in cholestasis. Journal of Surgical Research, 2005. 127(2): p. 112-117. DOI: 10.1016/j.jss.2005.01.024.
Xia, N., U. Förstermann, and H. Li, Resveratrol and endothelial nitric oxide. Molecules, 2014. 19(10): p. 16102-16121. DOI: 10.3390/molecules191016102.
Klinge, C.M., et al., Resveratrol stimulates nitric oxide production by increasing estrogen receptor αa‐Src‐caveolin‐1 interaction and phosphorylation in human umbilical vein endothelial cells. The FASEB Journal, 2008. 22(7): p. 2185-2197. DOI: 10.1096/fj.07-103366.
Diaz, M., et al., Acute resveratrol supplementation in coronary artery disease: Towards patient stratification. Scandinavian Cardiovascular Journal, 2020. 54(1): p. 14-19. DOI: 10.1080/14017431.2019.1657584.
Elmadhun, N.Y., et al., The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. Annals of the new York Academy of Sciences, 2013. 1290(1): p. 130-135. DOI: 10.1111/nyas.12216.
이미희, Application of bioactive compounds on small-caliber vascular graft for prevention of intimal hyperplasia. 2011, Graduate School, Yonsei University.
Gu, J., et al., Effects of resveratrol on endothelial progenitor cells and their contributions to reendothelialization in intima-injured rats. Journal of cardiovascular pharmacology, 2006. 47(5): p. 711-721. DOI: 10.1097/01.fjc.0000211764.52012.e3.
Rodrigo, R., et al., Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules, 2022. 27(8): p. 2564. DOI: 10.3390/molecules27082564.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Ioana Craciun, Brudasca Florinel
This work is licensed under a Creative Commons Attribution 4.0 International License.