Nutritional Value, Microbiological Safety, and Mycotoxin Risk of Black Soldier Fly Larvae Reared on Wheat Bran: Implications for Dog Nutrition

Authors

  • Claudiu-Nicusor Ionica University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
  • Sorana Daina University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
  • Smaranda Craciun University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Microbiology, Immunology and Epidemiology, Manastur Street, 400372 Cluj-Napoca, Romania
  • Andrei-Radu Szakacs University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
  • Romelia Pop University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Anatomic Pathology, Manastur Street, 400372 Cluj-Napoca, Romania
  • Adrian Macri University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania

DOI:

https://doi.org/10.52331/v29i4842

Keywords:

insect dog, nutrition, analysis

Abstract

This study explores the crude chemical composition, microbiological profile, and mycotoxin contamination of Black Soldier Fly Larvae (BSFL) reared on wheat bran. The chemical composition is analyzed to assess the larvae’s nutritional value, while microbiological dynamics are investigated across different developmental stages (eggs to adults). Additionally, the effect of thermal treatment on microbial safety in BSFL powder is assessed. Mycotoxin levels in BSFL powder are evaluated to ensure food and feed safety. This research highlights the potential of BSFL as a sustainable and safe protein source.

Author Biographies

  • Claudiu-Nicusor Ionica, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania

    Claudiu-Nicuşor Ionică 

    DVM, MVSc, PhD Student
    Department of Food Safety and Animal Productions
    Animal Nutrition
    Faculty of Veterinary Medicine
    University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca

  • Sorana Daina, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
    Associate Professor SORANA TEODORA DAINA, DVM, MSc, PhD  University of Agricultural Sciences and Veterinary Medicine   
    Faculty of Veterinary Medicine  Department of Food Safety and Animal Productions Animal Nutrition
  • Smaranda Craciun, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Microbiology, Immunology and Epidemiology, Manastur Street, 400372 Cluj-Napoca, Romania

    Smaranda CRĂCIUN, PhD student
    Department of Microbiology, Immunology and Epidemiology - Faculty of Veterinary Medicine
    University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

  • Andrei-Radu Szakacs, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
    Associate Professor ANDREI-RADU SZAKACS, DVM, MSc, PhD  University of Agricultural Sciences and Veterinary Medicine   
    Faculty of Veterinary Medicine  Department of Food Safety and Animal Productions Animal Nutrition
  • Romelia Pop, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Anatomic Pathology, Manastur Street, 400372 Cluj-Napoca, Romania
    Romelia Pop DVM, MVSc, PhD, ACVP Resident, Assistant professor
    Department of Anatomic Pathology
    Faculty of Veterinary Medicine
    University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca
  • Adrian Macri, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Department of Animal Nutrition, Manastur Street, 400372 Cluj-Napoca, Romania
     Professor ADRIAN MACRI, DVM, MSc, PhD  University of Agricultural Sciences and Veterinary Medicine   
    Faculty of Veterinary Medicine  Department of Food Safety and Animal Productions Animal Nutrition

References

Govorushko S. Global status of insects as food and feed source: A review. Trends Food Sci Technol Else-vier; 2019;91:436–445. doi: https://doi.org/10.1016/j.tifs.2019.07.032

Kierończyk B, Rawski M, Mikołajczak Z, Homska N, Jankowski J, Ognik K, Józefiak A, Mazurkiewicz J, Józefiak D. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Animal Nutrition Elsevier; 2022;11:60–79. doi: https://doi.org/10.1016/j.aninu.2022.06.015

Barragan-Fonseca KB, Dicke M, van Loon JJA. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. J Insects Food Feed Wageningen Academic Publish-ers; 2017;3(2):105–120. doi: https://doi.org/10.3920/JIFF2016.0055

Penazzi L, Schiavone A, Russo N, Nery J, Valle E, Madrid J, Martinez S, Hernandez F, Pagani E, Ala U. In vivo and in vitro digestibility of an extruded complete dog food containing black soldier fly (Hermetia illucens) larvae meal as protein source. Front Vet Sci Frontiers Media SA; 2021;8:653411. doi: https://doi.org/10.3389/fvets.2021.653411

Higa JE, Ruby MB, Rozin P. Americans’ acceptance of black soldier fly larvae as food for themselves, their dogs, and farmed animals. Food Qual Prefer Elsevier; 2021;90:104119. doi: https://doi.org/10.1016/j.foodqual.2020.104119

Kim J-G, Choi Y-C, Choi J-Y, Kim W-T, Jeong G-S, Park K-H, Hwang S-J. Ecology of the black soldier fly, Hermetia illu-cens (Diptera: Stratmyidae) in Korea. Korean journal of applied entomology Korean Society of Applied Entomology; 2008;47(4):337–343.

De Smet J, Wynants E, Cos P, Van Campenhout L. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl Environ Micro-biol Am Soc Microbiol; 2018;84(9):e02722-17. doi: https://doi.org/10.1128/AEM.02722-17

Boakye-Yiadom KA, Ilari A, Duca D. Greenhouse gas emissions and life cycle assessment on the black soldier fly (Her-metia illucens L.). Sustainability MDPI; 2022;14(16):10456.

Boaru A, Vig A, Ladoși D, Păpuc T, Struți D, Georgescu B. The use of various oviposition structures for the black soldier fly, Hermetia illucens L.(Diptera: Stratiomydae) in improving the reproductive process in captivity. 2019;

Boafo HA, Gbemavo D, Timpong-Jones EC, Eziah V, Billah M, Chia SY, Aidoo OF, Clottey VA, Kenis M. Substrates most preferred for black soldier fly Hermetia illucens (L.) oviposition are not the most suitable for their larval development. J Insects Food Feed Wageningen Academic Publishers; 2023;9(2):183–192.

Lemke NB, Dickerson AJ, Tomberlin JK. No neonates without adults: A review of adult black soldier fly biology, Her-metia illucens (Diptera: Stratiomyidae). BioEssays Wiley Online Library; 2023;45(1):2200162.

Sutton A, Costa ND. The role of black soldier fly larval protein and fat in companion-animal nutrition: challenges and opportunities from an industry perspective. Anim Prod Sci CSIRO Publishing; 2023; doi: https://doi.org/10.1071/AN23080

Kotob G, Sluczanowski N, Siddiqui SA, Tome NM, Dalim M, van der Raad P, Aarts K, Paul A. Potential application of black soldier fly fats in canine and feline diet formulations: A review of literature. J Asia Pac Entomol Elsevier; 2022;25(4):101994. doi: https://doi.org/10.1016/j.aspen.2022.101994

De Smet J, Vandeweyer D, Van Moll L, Lachi D, Van Campenhout L. Dynamics of Salmonella inoculated during rearing of black soldier fly larvae (Hermetia illucens). Food Research International Elsevier; 2021;149:110692. doi: https://doi.org/10.1016/j.foodres.2021.110692

Van Looveren N, IJdema F, van der Heijden N, Van Der Borght M, Vandeweyer D. Microbial dynamics and vertical transmission of Escherichia coli across consecutive life stages of the black soldier fly (Hermetia illucens). Anim Microbiome Springer; 2024;6(1):29. doi: https://doi.org/10.1186/s42523-024-00317-4

Gold M, Von Allmen F, Zurbrügg C, Zhang J, Mathys A. Identification of bacteria in two food waste black soldier fly larvae rearing residues. Front Microbiol Frontiers Media SA; 2020;11:582867. doi: https://doi.org/10.3389/fmicb.2020.582867

Schreven SJJ, de Vries H, Hermes GDA, Zeni G, Smidt H, Dicke M, Van Loon JJA. Black soldier fly larvae influence in-ternal and substrate bacterial community composition depending on substrate type and larval density. Appl Environ Microbiol Am Soc Microbiol; 2022;88(10):e00084-22. doi: https://doi.org/10.1128/aem.00084-22

Lopez-Santamarina A, Mondragon A del C, Lamas A, Miranda JM, Franco CM, Cepeda A. Ani-mal-origin prebiotics based on chitin: An alternative for the future? a critical review. Foods MDPI; 2020;9(6):782. doi: https://doi.org/10.3390/foods9060782

Diener S, Zurbrügg C, Tockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste management & research Sage Publications Sage UK: London, England; 2009;27(6):603–610. doi: https://doi.org/10.1177/0734242X091038

Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, Michiels J, Eeckhout M, De Clercq P, De Smet S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric Wiley Online Library; 2017;97(8):2594–2600. doi: https://doi.org/10.1002/jsfa.8081

Biasato I, Colombino E, Luna A, Capucchio MT. Insects and gut health in food-producing animals. Environmental ef-fects on gut health in production animals Wageningen Academic; 2024. p. 365–399. doi: https://doi.org/10.3920/9789004695467_017ISBN:900469546X

Bosch G, Vervoort JJM, Hendriks WH. In vitro digestibility and fermentability of selected insects for dog foods. Anim Feed Sci Technol Elsevier; 2016;221:174–184.

Pinney J, Costa-Font M. A Model for Consumer Acceptance of Insect-Based Dog Foods among Adult UK Dog Owners. Animals MDPI; 2024;14(7):1021. doi: https://doi.org/10.3390/ani14071021

FEDIAF. Nutritional Guidelines for Pet Food for Cats and Dogs. FEDIAF. 2021. Available from: https://fediaf.orghttps://fediaf.org [accessed Sep 30, 2024]

C E. Commission Recommandation 2006/576. Official Journal of the European Union OJ L 2006;229:7–9.

Macías-Montes A, Rial-Berriel C, Acosta-Dacal A, Henríquez-Hernández LA, Almeida-González M, Rodríguez-Hernández Á, Zumbado M, Boada LD, Zaccaroni A, Luzardo OP. Risk assessment of the exposure to mycotoxins in dogs and cats through the consumption of commercial dry food. Science of The Total Environment Elsevier; 2020;708:134592. doi: https://doi.org/10.1016/j.scitotenv.2019.134592

Martínez-Martínez L, Valdivia-Flores AG, Guerrero-Barrera AL, Quezada-Tristán T, Rangel-Muñoz EJ, Ortiz-Martínez R. Toxic effect of aflatoxins in dogs fed contaminated commercial dry feed: a review. Toxins (Basel) MDPI; 2021;13(1):65. doi: https://doi.org/10.3390/toxins13010065

Gold M, Niermans K, Jooste F, Stanford L, Uwamahoro F, Wanja M, Veldkamp T, Sanderson A, Nunes VDS, Mathys A. Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer. J Insects Food Feed Wa-geningen Academic; 2023;1(aop):1–14. doi: https://doi.org/10.1163/23524588-00001006

Camenzuli L, Van Dam R, De Rijk T, Andriessen R, Van Schelt J, Van der Fels-Klerx HJ. Tolerance and excretion of the mycotoxins aflatoxin B1, zearalenone, deoxynivalenol, and ochratoxin A by Alphitobi-us diaperinus and Hermetia illucens from contaminated substrates. Toxins (Basel) MDPI; 2018;10(2):91. doi: https://doi.org/10.3390/toxins10020091

Niermans K, Hoek-van den Hil EF, van der Fels-Klerx HJ, van Loon JJA. The role of larvae of black soldier fly and house fly and of feed substrate microbes in biotransformation of aflatoxin B1. Ecotoxicol Environ Saf Elsevier; 2024;279:116449. doi: https://doi.org/10.1016/j.ecoenv.2024.116449

Querejeta M, Hervé V, Perdereau E, Marchal L, Herniou EA, Boyer S, Giron D. Changes in bacterial community struc-ture across the different life stages of black soldier fly (Hermetia illucens). Microb Ecol Springer; 2023;86(2):1254–1267. doi: https://doi.org/10.1007/s00248-022-02146-x

Gorrens E, Van Moll L, Frooninckx L, De Smet J, Van Campenhout L. Isolation and identification of dominant bacteria from black soldier fly larvae (Hermetia illucens) envisaging practical applications. Front Microbiol Frontiers Media SA; 2021;12:665546. doi: https://doi.org/10.3389/fmicb.2021.665546

Klüber P, Müller S, Schmidt J, Zorn H, Rühl M. Isolation of bacterial and fungal microbiota associated with Hermetia il-lucens larvae reveals novel insights into entomopathogenicity. Microorganisms MDPI; 2022;10(2):319. doi: https://doi.org/10.3390/microorganisms10020319

Larouche J, Deschamps M-H, Saucier L, Lebeuf Y, Doyen A, Vandenberg GW. Effects of killing methods on lipid oxida-tion, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals MDPI; 2019;9(4):182. doi: https://doi.org/10.3390/ani9040182

Wood MW, Lepold A, Tesfamichael D, Lasarev MR. Risk factors for enterococcal bacteriuria in dogs: A retrospective study. J Vet Intern Med Wiley Online Library; 2020;34(6):2447–2453. doi: https://doi.org/10.1111/jvim.15916

Harvey B, Tarrant J, McClosky M, Nathanson O, Cole S. Enterococcus spp. meningoencephalitis, ventriculitis, and hy-pophysitis in a dog. J Am Anim Hosp Assoc American Animal Hospital Association; 2021;57(6):290–293. doi: https://doi.org/10.5326/JAAHA-MS-7112

Scarpellini R, Giunti M, Pontiero A, Savini F, Esposito E, Piva S. Two cases of bloodstream infections associated with opportunistic bacterial species (Enterococcus hirae and Enterobacter xiangfangensis) in companion animals. BMC Vet Res Springer; 2023;19(1):63. doi: https://doi.org/10.1186/s12917-023-03615-2

Li X, Mei C, Luo X, Wulamu D, Zhan S, Huang Y, Yang H. Dynamics of the intestinal bacterial community in black sol-dier fly larval guts and its influence on insect growth and development. Insect Sci Wiley Online Library; 2023;30(4):947–963. doi: https://doi.org/10.1111/1744-7917.13095

Erickson MC, Islam M, Sheppard C, Liao J, Doyle MP. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J Food Prot Elsevier; 2004;67(4):685–690. doi: https://doi.org/10.4315/0362-028X-67.4.685

Downloads

Published

2024-12-30

How to Cite

“Nutritional Value, Microbiological Safety, and Mycotoxin Risk of Black Soldier Fly Larvae Reared on Wheat Bran: Implications for Dog Nutrition” (2024) Cluj Veterinary Journal, 29(4), pp. 9–18. doi:10.52331/v29i4842.

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)